
NPS-EC-02-003

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Signal to Noise Ratio Improvement Using Wavelet
and Frequency Domain Based Processing

by

R. Hippenstiel

May 24, 2002

Approved for public release; distribution is unlimited.

Sponsored by the Naval Postgraduate School Center for Reconnaissance Research.

20020730 166

NAVAL POSTGRADUATE SCHOOL
Monterey, California

RADM David R. Ellison
Superintendent

R. Elster
Provost

This report was sponsored by the Naval Postgraduate School Center for
Reconnaissance Research.

Approved for public release; distribution is unlimited.

The report was prepared by:

RALPH HIPPENSTIEL
Associate Professor
Department of Electrical and
Computer Engineering

Reviewed by:
r\

/

L
FREY B JHNORR JEFFREY:

Chairman
Department of Electrical and
Computer Engineering

Released by:

DAVID W. NETZER
Associate Provost and
Dean of Research

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time tor reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway. Suite
1704 Adinnton VA ???09-4309 end to the Office of r^nanament and Südost Paperwork Reduction Project «1704-01m. Washington no 7DS03

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE

May 24, 2002
3. REPORT TYPE AND DATES COVERED

Final Report, March-December 2001
4. TITLE AND SUBTITLE

Signal to Noise Ratio Improvement Using Wavelet and Frequency
Domain Based Processing

5. FUNDING NUMBERS

6. AUTHOR(S)

R. Hippenstiel
MJJPR NO. B448212

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Department of Electrical and Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

NPS-EC-02-003

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

Center for Reconnaissance Research
Naval Postgraduate School
Monterey, CA 93943

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

The views expressed in this report are those of the author and do not reflect the official policy or
position of the Department of Defense or the United States Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution is unlimited.
12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

This work investigates the use of wavelet and FFT based decompositions to improve the signal to
noise ratio of noisy signals. In their respective transform domains, median filtering or predictive
filtering is employed. Prior to the decompositions a short time domain median filter is used. As a
benchmark, only a median time domain filter (order 3) is used and for part of the work the pre-filtering
is disabled. Three test signals are used: two frequency chirped signals and a Barker coded BPSK
signal. The most effective processing sequence for the chirp signals is median filtering, followed by
FFT processing, which in turn, is followed by median filtering of the FFT transform coefficients. For
the BPSK signal, the time domain median filter provided the best results.

14. SUBJECT TERMS

denoising, time-frequency/scale distributions, electronic warfare
15. NUMBER OF PAGES

55
16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMIITATION OF
ABSTRACT

UL
NSN 7540-01-280-5500 STANDARD FORM 298 (Rev. 2-89)

Prescribed by ANSI Sid. 239-18 298-102

Table of Contents

1. Introduction i
A) Background l
B) Organization 2

2. Decomposition 2

3. Wavelet Based Processing 4
i) Median Filtering 6
ii) Predictive Filtering 6

4. FFT Based Processing 7

5. Data and Processor Parameters 8

6. Simulation Results 9

7. Conclusion 17

8. References 18

Appendix A 19

Appendix B

Executive Summary

This work investigates the use of wavelet and FFT decompositions in the context
of denoising signals embedded in white Gaussian noise. The data is pre-filtered
(3rd order median filter) in part of the work and is not pre-filtered in another part.
Once the noisy signal is decomposed (using the wavelet or the FFT), the transform
coefficients are denoised using a predictive filter (order 2) or another median filter
(order 3). Three test signals are used: a frequency chirp with constant amplitude, a
frequency chirp with RC time constant type amplitude modulation, and a Barker
coded BPSK signal. Pre-filtering, coupled with FFT processing and follow on
median filtering provides the best MSE results for the two chirped waveforms. The
decomposition approach does not work for the BPSK signal. In this case, a simple
median filter, employed in the time domain, is shown to be a better denoising
candidate.

xx

SIGNAL TO NOISE RATIO IMPROVEMENT USING WAVELET
AND FREQUENCY DOMAIN BASED PROCESSING

Ralph Hippenstiel
Electrical and Computer Engineering Department

Naval Postgraduate School
Monterey, Ca 93943

1. Introduction

A. BACKGROUND

In the majority of applications only a noise-corrupted version of the signal of

interest is available. In many problems it is desirable to enhance the signal to allow a

more precise determination of the signal parameters, such as duration, chip rate, chirp

rate, modulation type, carrier frequency, etc. The enhancement concept can also be

applied to improve time delay based localization. In time delay estimation both channels

are denoised. The cross correlation properties of the signal channels are also used to

obtain a precise time difference of arrival (TDOA) estimate [lj.

Wavelet (WL) decomposition is used in many signal processing applications. One

important application is noise reduction, also called denoising. Each transform coefficient

represents a measure of the correlation between the signal and a WL basis function.

Large coefficients represent good correlation, while small coefficients represent poor

correlation. Denoising tends to retain the coefficients that preserve the signal and remove

the coefficients that represent noise. The difficult part of the denoising process is to

decide which components to emphasize and which ones to de-emphasize. One can also

replace the WL decomposition with a Fourier type decomposition, so that in the time-

1

frequency domain the signal related components are emphasized. Again the difficulty is

to decide which components are signal related and which ones are not.

The idea behind signal enhancement is simple: transform the noisy signal to the

time-scale or time-frequency domain (i.e., analysis), reduce the noise effects, and

transform the modified coefficients back to the time domain (i.e., synthesis). Since the

signal will not occupy all frequency regions at all times, some of the noise can be

removed. The noise reduction works best when the signal is concentrated in time, or in

frequency, or both in frequency and time.

B. ORGANIZATION

This report examines two transform techniques that are used to denoise (or filter)

the transform coefficients in their respective transform domains. A median filtering and

predictive filtering method is used to denoise the data in the transform domain. A pre-

filtering approach (using a median filter in the original time domain) is also implemented

and compared to results when no pre-filtering is attempted.

2. DECOMPOSITIONS

The basic idea behind denoising (or filtering) is to separate the noisy signal into

its constituent components. That is, separation into parts primarily associated with the

signal components and those that are not. The noise removal tends to retain the signal

related components and remove as much as is possible the components that relate to the

noise only. Inadvertently, some signal components are removed while some noise

components are retained. To allow separation of noise and signal, the noisy signal is

mapped into one of the two transform domains, denoised, and mapped back to the

original time domain. The mappings considered are decompositions based on the wavelet

(WL) and the fast Fourier transform (FFT). The WL and FFT operations are shown in

block diagram form in figures 1 and 2, respectively. The symbols s and u are used to

denote the signal and the noise, respectively.

The WL transform allows a decomposition into spectral bands that are

proportional to the band center of the spectral region, i.e., constant Q-filtering. For all

detail and approximation coefficients, the sample rate is kept at the Nyquist rate, that is,

every scale (i.e., every band pass filter) has an output data rate matched to the bandwidth

of the filter [2].

On the other hand, the FFT transform provides for a uniformly spaced filter bank

having a constant band width a constant data output rate. The data rate can be matched to

the Nyquist rate. For practical reasons, overlap processing is used, which makes the

output data rate larger than the minimum rate (i.e., overlap is 75 percent, the output rate is

4 times the Nyquist rate) [2].

Block Diagram Using Wavelet
D enoising

r
W T D eno ising IW T

x(n) - s(n) + u(n)
s(n) = s(n)+ e(n)

Figure 1: System block diagram for WL based denoising.

Block Diagram Using FFT Based
D enoising

x{n) = s(n)+ u(n)
s(n) = s(n)+ e(n)

Figure 2: System block diagram for FFT based denoising.

Prior to the decomposition a pre-filter can be used in the denoising process. If pre-

filtering is invoked then it is accomplished using a 3rd order median filter.

3. WAVELET BASED PROCESSING

Wavelet (WL) processing is also known as constant Q-filtering, pro-proportional

band width processing, multi-rate filtering, and time-scale processing. Figure 3 shows

some of the details of the WL based processing and the weighting of the detail and

approximation coefficients. In each region of interest a low and high pass filter is used to

edit out signals occupying the respective spectral band region.

The denoising procedure consists of three steps. These steps are discrete wavelet

decomposition, scaling of each subband sequence, and an inverse wavelet transform. The

modified subband sequences are obtained by weighting each subband as given by

di =wddi ; and

ai =Wa;ai I i = l,2,---,J ,

where wd and wa represent the weighting terms.

x(k)
LPF

0
&•—wdi

©rt^©

y
<&—wdi

r©

0
dj

a
j

Figure 3: Processing in the wavelet domain.

The weighting accomplishes the signal enhancement by de-emphasizing noise

related components. The weighting schemes used in this report is median filtering and

predictive filtering. Classical denoising schemes as advocated in Donahoe [3-5] fail at

low SNR (i.e., in the negative dB region) and are not investigated in this report. Some

detail on the classical denoising performance in conjunction with GSM signal

localization can be found in [6].

Transform coefficients denoising is obtained using a median filter or an optimal

(Wiener) predictor.

i) Median Altering:

The median filter is applied to each scale output. The detail (band pass) outputs

are denoted by dj (for i =1,..,J), while the single approximation (low pass) output is

referred to as a; . Each output (detail and approximation) is median filtered to de-

emphasize (reduce) the band limited white noise contribution. The median filter takes

several sequential data points and uses as the filtered output the data point that is obtained

as the middle point when ranking is invoked. A median filter, of length 3, is applied to

the first J sequences of detail coefficients and the J* sequence of the approximation

coefficients of the WL transform. The median filter replaces the center point of the

window with the median value of all the points contained in the window. Ranking the

values and selecting the central value achieves this. The length of the window is very

important. For example, for a narrowband signal a long window length maybe

appropriate. If the signal is non-stationary, a short window tends to be better. If one does

not have a priori information about the source signal this can be a drawback. Based on

empirical evidence a median filter of size 3 was selected for the three data sets used in the

simulations.

ii) Predictive Filtering:

The predictive filtering [7] is accomplished using a Wiener FIR filter of size 2.

The predictive filter predicts the predictable part that is thought to be the signal, hence its

output tends to have little residual noise. A predictive filter is applied to all generated

detail sequences and the final approximation sequence of interest. Each filter output has

the same number of data samples as its corresponding input sequence. During the

initialization, (i.e., the transitory region, i.e., the first two data output points), the input

(unfiltered) data is used as the estimate of the signal component. The second order

predictor works best in that it produced a smaller MSE compared to predictors of

different sizes.

4. FFT BASED PROCESSING

In the FFT based approach, the constant Q-filters are replaced with constant

bandwidth filters (i.e., with the FFT bins). As in the WL based approach, two denoising

(filtering) approaches are taken: median filtering and predictive filtering. All frequency

bins have the same number of data points (i.e., have the same sampling rate). The symbol

r is used to denote the down and up sampling. The down sampling is a function of the

overlap factor and the data length used in the FFT transform.

x(n)=s(n)+u(n.
\

Time-Frequency Processing

BPF

BPF

modifier

(jr) ► modifier —\r)

Figure 4: Schematic data flow in time-frequency (FFT) based denoising.

5. DATA AND PROCESSOR PARAMETERS

Three test signals are used in the simulations. All simulations are conducted using

Matlab (version 6.0) [8]. The first one is a chirp signal that increases in amplitude from

zero to a maximum in an RC time constant fashion. This signal is referred to as the

Doppler signal in reference [9]. The second signal is a linearly chirped sinusoid that has a

constant amplitude. The third signal is a BPSK signal that uses a Barker code of length 5

[10], for each one of its information bits.

The data length is fixed at 512 samples. The power of the signals is normalized to

be unity. The additive Gaussian noise is white having a variance that is adjusted to obtain

the desired signal-to-noise ratio (SNR). The following SNR values are used:

-10, -6, -3,0, 3, and 6 decibels (dB). To ensure statistical reliability, each signal is

processed 100 times using independent noise realizations. The third signal uses a random

start time, that is, a delay uniformly distributed between 0 and 27 data points. Its carrier

frequency is selected so that there are 9 data points per period of the carrier. The

denoising is performed in the WL and FFT domain.

For the WL based processing an empirically selected Daubechies filter of order

8 (in the Matlab wavelet toolbox denoted by DB4, [11]) is used. The first 5 scales are

used in the denoising process, which accesses the top 31/32 of the spectrum as band pass

regions (detail) and the lower 1/32 of the spectrum as the low pass region

(approximation). The band pass region as determined by the 5 scales, occupies 1/2 + 1/4

+ 1/8 + 1/16 + 1/32 = 31/32 of the spectral range leaving the remainder (1/32) as the low

pass region. In the wavelet literature, band pass signals and low pass signals are denoted

by detail and approximation functions, respectively.

For the FFT based processing an FFT size of 32, an overlap of 4:1 (i.e., 75

percent), and a triangular data window is used [12]. For the given data length of 512, this

resulted in 61 output points for each spectral bin. Since the data is real valued, only the

non-negative frequency regions are processed, with the negative spectral region being

replaced with the complex conjugate of the corresponding processed positive spectral

region.

6. SIMULATION RESULTS

Figures 5 through 10 show the mean squared error (MSE) performance versus

SNR for the three test signals. The experiments utilize 6 different SNRs. The MSE, at

each SNR, is given by

K N A

MSE = l/(KN) 2 E (s(n)-s (n,k)f

where K is the number of realizations, N is the number of data points (i.e., fixed at 512),

A

and s (n,k) is the k-th denoised (filtered) realizations of s(n) derived from x(n), the

noisy data. For the generation of figure 5 through 10 and A.l through A.6, 100

realizations, (i.e., K = 100), are used.

The MSE is one benchmark that can be used to establish performance. We note that when

the Wiener filter (i.e., predictor) is used, then strictly interpreting the MSE results can be

misleading. This is especially true as the MSE approaches a value of one. For example, it

is possible for the weights of the Wiener based filter to become very small. Hence the

predictor output tends to be zero. Since the power of the true signal is set to be unity, the

MSE tends to be one. When a predictor is involved, it may be desirable to examine the

actual denoised output. Some representative examples (-6 and 6 dB) are given in the

second part of appendix A. We note that for time delay of arrival (TDOA) estimation the

MSE can be interpreted as a measure of correlation, that is as the error goes to zero, the

sum of the auto correlation coefficient of the replica and of the auto correlation

coefficient of the estimate tends to equal twice the cross correlation coefficient of the

signal and the estimate. In this sense, it suggests that the replica (i.e., true signal) and the

denoised signal correlate strongly.

Figures 5 through 10 illustrate plots of the MSE for the three test signals as a

function of processing technique and SNR. All test results are obtained by pre-filtering

the data with a median filter. That is prior to time-scaling or time-frequency

decomposition, the data is filtered using a median filter of order 3. A 3rd order filter is the

smallest possible median filter. It achieves some noise reduction without extensive

distortion of transient features. The odd numbered figures show results resulting from the

WL based decomposition, while the even numbered figures show results resulting from

the FFT based decomposition.

The solid line (i.e., the line with circles) serves as a reference line and demonstrates the

MSE performance when using only a 3rd order median filter. This median filter is the

only filtering applied and is implemented in the time domain. The variance of the noise

corrupting the signals is VA, V4, 1, 2,4 and 10 at 6, 3, 0, -3, -6, and -10 dB, respectively.

These variance values will also correspond to the MSE if no filtering is done.

10

-©- time-domain median filt
-B- med-wl-predict
-A- med-wl-median

Figure 5. Signal Si. Pre-filtering only and pre-filtered WL decomposition.

Figure 5 and 6 show results for the test signal Si. Signal Si is the amplitude

modulated sinusoid, whose amplitude increases in an RC time constant fashion. Figure 5

shows the MSE of the filtered output, using just the median filter of size 3, which reduces

the variance of the data. Follow on processing via the WL based decomposition reduces

the error relative to pure time domain median filtering for SNR values below -3 dB.

Based on the MSE the prediction filter, applied to the wavelet coefficients, outperforms

median filtering applied to the wavelet coefficients. The situation is reversed for SNR

values higher then -3 dB. In this case, the predictor based scheme displays the worst

performance.

11

-e- time-domain median filt
-B- med-ffi-predict
-■A- med-fft-median

Figure 6. Signal Si. Pre-filtering only and pre-filtered FFT decomposition.

as a

Figure 6 shows the performance when median pre-filtering and FFT based

decomposition is used. Again the time domain median only filter output serves

reference (i.e., solid line with circles). For all SNR levels below 6 dB, the predictor

outperforms the median only filtering. For SNR levels below the 0 db level, median

filtering of the FFT coefficients, in terms of the MSE, provides the best results.

Figures 7 and 8 show results for the test signal S2. Signal S2 is a constant

amplitude linear frequency chirped sinusoid.

12

-S- time-domain median filt
-B- med-wl-predict
-A- med-wl-median

Figure 7. Signal S2. Pre-filtering only and pre-filtered WL decomposition.

Figure 7 shows the MSE of the filtered output, using the time domain median

filter of size 3, which reduces the variance of the data. Follow on processing via the WL

based decomposition reduces the error relative to just median filtering for SNR values

below -3 dB. Based on the MSE, the prediction filter, when applied to wavelet

coefficients, outperforms median filtering applied to wavelet coefficients for SNR values

below -3dB. The situation is reversed for SNR values higher then -3 dB. In this case, the

predictor based scheme displays the worst performance. The performance is very similar

to the one obtained using test signal S).

13

-6- time-domain median filt
-B- med-ffi-predict
-A- med-ffi-median

Figure 8. Signal S2. Pre-filtering only and pre-filtered FFT decomposition.

Figure 8 shows the performance when median pre-filtering and FFT based

decomposition is used. Again the time domain median only filter output serves as a

reference (i.e., solid line with circles). For all SNR levels below 6 dB, the predictor

outperforms the median only filtering. For SNR levels below the -3 db level median

filtering of the FFT coefficients provides the best MSE results,.

Figures 9 and 10 show results for the test signal S3 (i.e., the Barker coded BPSK

signal).

14

-9- time-domain median filt
-a- med-wl-predict
-A- med-wl-median

Figure 9. Figure S3. Pre-filtering only and pre-filtered WL decomposition.

Figure 9 show that the MSE of the filtered output, using the time domain median

filter of size 3, which reduces the variance of the data. For SNR values below -3 dB,

follow on processing via the WL based decomposition reduces the error relative to

median filtering only. Above the -3 dB level, the time domain based median filter has the

edge over the WL based decomposition using either median or prediction filtering. For all

SNR values under consideration, the prediction filter, as applied to the wavelet

coefficients, outperforms median filtering applied to the wavelet coefficients.

15

-©- time-domain median fill
-B- ffi-predict
-A- ffl-median

Figure 10. Signal S3. Pre-filtering only and pre-filtered FFT decomposition.

Figure 10 shows the performance when median pre-filtering and FFT based

decomposition is used. Again the time domain median only filter output serves as a

reference (i.e., solid line with circles). For all SNR levels, the predictor output has a

worse MSE performance than the median only filtering. For SNR levels below the -3 db

level, in terms of the MSE, median filtering of the FFT coefficients provides the best

results. The poor performance of the predictor comes as no surprise, since the phase of

the sinusoid changes 180 degrees at random points in time. For SNR values larger than

- 3 dB, straight forward time domain median filtering achieves the best MSE results.

The data was also processed using the WL and FFT based decompositions and

follow on processing without pre-filtering. The results are not as promising as the ones

16

when the pre-filter (i.e., time domain median filtering of order 3) is used. Plots of the

MSE are provided in the first part of appendix A.

The MSE can not tell the whole story since at least in the case of a Wiener

(optimal) filter the possibility exits that the filter weights become very small, hence the

filter (i.e., predictor) output can become very small. This implies that the MSE will

approach the power of the signal, which in the simulation is forced to be unity. It may be

advisable to look at particular denoised signals to have a visual interpretation of the

quality. Some typical randomly selected examples, (i.e., at - 6 and 6 dB) are given in the

second part of appendix A.

7. CONCLUSION

The chirped sinusoids, for SNR levels below - 3 dB are best denoised using a

combination of median pre-processing, FFT decomposition, and median filtering of the

FFT coefficients. Above - 3 dB median pre-processing, FFT decomposition and

predictive filtering of the FFT coefficients have a slight edge in terms of MSE over

median filtering of the FFT coefficients.

It appears that of the decomposition and processing techniques examined, time domain

median filtering followed by FFT based decomposition, which in turn is followed by

median filtering, provides the superior MSE performance.

The Barker coded BPSK signal is best denoised using time domain median filtering. This

particular signal is very sensitive to SNR since phase reversals are more easily distorted

even for SNR values greater than - 3 dB.

17

8. REFERENCES

1. Hippenstiel, R., Haney, T., and Ha, T., "Improvement of the Time Difference of
Arrival (TDOA) Estimation of GSM Signals Using Wavelets," NPS-EC-00-08,
June 30,2000, Naval Postgraduate School.

2. Hippenstiel, Ralph, Detection Theory: Applications and Digital Signal
Processing, CRC Press, Boca Raton, FL, 2002.

3. Donahoe, D., and Johnstone, I., "Ideal Spatial Adaptation via Wavelet
Shrinkage," Biometrica, vol. 81,pp425-255, 1994.

4. Donahoe, D., "Denoising by Thresholding," IEEE Information Theory, vol 41
pp 613-627, May 1995.

5. Donahoe, D., and Johnstone, I., "Adapting to Unknown Smoothness via Wavelet
Shrinkage," Journal of American Statistics Assoc, vol. 90, pp 1200-1224
December 1995.

6. Aktas, U., Time Difference of Arrival (TDOA) Estimation Using Wavelet Based
Denoising, Master's Thesis, Naval Postgraduate School, Monterey, CA, 1999.

7. Therrien, C.W., Discrete Random Signals and Statistical Signal Processing.
Prentice Hall, Inc., Englewood Cliffs, NJ., 1992.

8. The Matlab software, version 6.0, The Mathworks, Inc., Natick, MA, 1999.
9. WaveLab Version 802, wavelab@stat.stanford.edu
10. Andren, C, "Short PN Sequences for Direct Sequence Spread Spectrum

Radios,"http://www.ss-mag.com/pdf/shortpn.pdf ,pg. 1-4, April,4 1997.
11. The Matlab Wavelet Toolbox, The Mathworks, Inc., Natick, MA, 1996.
12. Marple, L., Jr., Digital Spectral Analysis with Applications. Prentice Hall Inc

Englewood Cliffs, NJ., 1987.

18

APPENDIX A

The appendix consists of two parts. The first part (figures A.l through A.6) shows

MSE results when no pre-filtering is used. That is the noisy data is FFT or WL

decomposed and than processed via an optimal predictor (size 2) or a median

filter (size 3). In all chirp signal test cases, i.e., figure A.l through A.4, the results

indicate that prior data manipulation (i.e., 3 point median filtering in the time

domain) will out perform the schemes that do not use pre-filtering. The Barker

coded BPSK, seems only to benefit from time domain median filtering only at

high SNR values (i.e., 6 dB or more), see for example figure A. 12. The

decompositions are not very useful when denoising a signal belonging to the

family characterized by S3 (i.e., Barker coded BPSK).

19

rA

-©- time-domain median filt
-Q- wl-predict
-A- wl-median

SNR

Figure A.l: No pre-processing, Signal S,. Time domain pre-filtering versus WL

decomposition.

Figure A.l shows results for signal Si. As a benchmark (solid line with circles)

the time domain only median filter of order 3 is used. The other two plots show

WL decomposition results that uses follow on median (order 3) and prediction

filtering (size 2).

20

time-domain median filt
-H- ffi-predict
-A- ffi-median

Figure A.2: No pre-processing, Signal Si. Time domain pre-filtering versus FFT

decomposition.

Figure A.2 shows results for signal Si. As a benchmark (solid line with circles) the time

domain only median filter of order 3 is used. The other two plots show FFT

decomposition results that uses follow on median (order 3) and prediction filtering (size

2).

21

5^

-9- time-domain median filt
-B- wl-predict
-A- wl-median

Figure A.3 : No pre-processing, Signal S2. Time domain pre-filtering versus WL

decomposition.

Figure A.3 shows results for signal S2. As a benchmark (solid line with circles) the time

domain only median filter of order 3 is used. The other two plots show WL

decomposition results that uses follow on median (order 3) and prediction filtering (size

2).

22

time-domain median
-B- ffi-predict
-A- fit-median

Figure A.4 : No pre-processing, Signal S2. Time domain pre-filtering versus FFT

decomposition.

Figure A.4 shows results for signal S2. As a benchmark (solid line with circles) the time

domain only median filter of order 3 is used. The other two plots show FFT

decomposition results that uses follow on median (order 3) and prediction filtering (size

2).

23

-©- time-domain median filt
-B- wl-predict
-A- wl-median

Figure A.5: No pre-processing, Signal S3. Time domain pre-filtering versus WL

decomposition.

Figure A.5 shows results for signal S3. As a benchmark (solid line with circles) the time

domain only median filter of order 3 is used. The other two plots show WL

decomposition results that uses follow on median (order 3) and prediction filtering (size

2).

24

time-domain median filt
-a- fft-predict
-A- fft-median

Figure A.6: No pre-processing, Signal S3. Time domain pre-filtering versus FFT

decomposition.

Figure A.6 shows results for signal S3. As a benchmark (solid line with circles) the time

domain only median filter of order 3 is used. The other two plots show FFT

decomposition results that uses follow on median (order 3) and prediction filtering (size

2).

The second part of appendix A serves as an illustration as to how the signals

(original, noisy signal, denoised signal) look like in the time domain for a few selected

values of SNR. The SNR values selected are -6 and 6 dB. Since there are many

realizations at each SNR, only the first realization is used in the plots (i.e., a random

25

member of the ensemble). These plots can provide some insight into time domain

performance since the MSE results can be misleading when it comes to the optimal

predictor implementation.

Figures A.7 through A.9 have an SNR of-6 dB and represent SI, S2, and S3,

respectively. Figure A. 10 through A. 12 have an SNR of 6 dB and represent signals S1,

S2, and S3, respectively. Each plot consists of 7 subplots. The subplots, for the purpose

of this discussion, are referred to in the same sense as the members of a matrix, that is

subplot (row, column). Subplot (1,1) and (1,2) show the signal and noisy signal,

respectively. Subplot (2,1) shows the time domain median filtered result. Subplot (3,1)

and (4,1) show results when the data is pre-processed and wavelet decomposed . Subplot

(3,1) uses prediction on the wavelet coefficients, while (4,1) uses median filtering on the

wavelet coefficients. Subplot (3,2) and (4,2) uses pre-processing and FFT decomposition.

Subplot (3,2) uses prediction on the FFT coefficients, while (4,1) uses median filtering on

the FFT coefficients.

26

!iNlftM\#*"^
med-WL-med

200 400 600

600

600

Figure A.7: Signal Si at -6 dB

Figure A.7 shows a typical time domain representation of signal Si, at an SNR value of

- 6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the

time domain).

27

-5

200 400 600

f^A^M
med-WL-med

200 400 600

^^A
200 400

med

600

Figure A.8: Signal S2 at -6 dB

Figure A.8 shows a typical time domain representation of signal S2, at an SNR value of

- 6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time

domain).

28

50 100 150

med-FFT-p ed

50 100 150

50 100 150 50 100 150

Figure A.9: Signal S3 at - 6dB (first 150 samples)

Figure A.9 shows a typical time domain representation of signal S3, at an SNR value of

- 6 dB. Only the first 150 data points are used to show the phase transition points more

clearly. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time

domain).

29

-2

5

original

0 20Ö 40Ö 600

medfilt onlj

200 400 600

med-WL-pr4d

200 400 600

-5
med-WL-mfed

200 400 600

1#JV\Z^
sig +noise

200 400 600

med-FFT-prdd

200 400 600

med-FFT-me

200 400 600

Figure A. 10: Signal S i at 6 dB

Figure A.10 shows a typical time domain representation of signal Su at an SNR value of

6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time

domain).

30

med filt only

^^K^m^
-5

sig + noise

200 400 600

200 400

wvV-^
med-FFT-mbd

200 400 600

Figure A. 11: Signal S2 at 6 dB

Figure A. 11 shows a typical time domain representation of signal S2, at an SNR value of

6 dB. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time

domain).

31

100 150

Figure A. 12: Signal S3 at 6 dB (first 150 samples)

Figure A. 12 shows a typical time domain representation of signal S3, at an SNR value of

6 dB. Only the first 150 data points are used to show the phase transition points more

clearly. The signal is pre-processed (i.e., median filtering of order 3 is applied in the time

domain).

32

APPENDIX B

Matlab code:

nois_rem_2.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% program nois_rem_2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% creates and denoises 3 test signals for a set of SNR's.
% Doppler signal+ chirp with RC time constant envelope
% approching a constant, a constant envelope chirp, and
% a Barker coded BPSK signal. All signals have unit power.
% calls makesignal,denoisewl, predi,dnswlmed
% written by Ralph Hippenstiel
% wavelets used are Db4 (Daubechies order 8)
% FFTs use a triangular window and 4:1 overlap (75% overlap)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

clear
nx=input('enter number of scales nx = ')
p=input('enter predictor size = ')
nd=512;
nr=input('enter number of realizations (i.e., 100) = ')

%create the signal si
s 1 =makesignal('Doppler',nd);
zl=length(sl);% zl is length of the data = nd
pwrl=l/zl*sum(sl.A2);
sl=sl/sqrt(pwrl);%normalized power

%create the signal s2
tim=[0.01:0.01:6.12];
xchirp=sin(34.7./tim);

33

s2=xchirp(41:41 -1 +z 1);
pwr2=l/zl*sum(s2.A2);
s2=s2/sqrt(pwr2);%normalized power

%define SNR
sn=[-10,-6,-3,0,3,6];
SNR=10.A(sn./10);

err_l=[]
err_2=[]
err_3=[]

err_wl_predl=[];
err_wl_pred2=[];
err_wl_pred3=[];
er_wl_predl=[j;
er_wl_pred2=[];
er_wl_pred3=[];

err_wl_medl=[];
err_wl_med2=[];
err_wl_med3=[];
er_wl_medl=[];
er_wl_med2=[];
er_wl_med3=[];

err_fft_predl=[];
err_fft_pred2=[];
err_fft_pred3=[];
er_fft_predl=[];
er_fft_pred2=[];
er_fft_pred3=[];

err_fft_medl=[];
err_fft_med2=[];
err_fft_med3=[];
er_fft_medl=[];
er_fft_med2=[];
er_fft_med3=[];

for i=l :nr; %nr = no. of realizations

%create Gaussian noise, zero mean & unit variance
n=randn(l,zl);

34

%create the signal s3
%w=[ones(18,l); -ones(18,l); ones(6,l); -ones(12,l); ones(6,l); -ones(6,l)];
w=[ones(3*18,l); -ones(18,l); ones(18,l)];
%bi=sign(rand(1,8)-0.5);
%vi=[bi(l)*w;bi(2)*w;bi(3)*w;bi(4)*w;bi(5)*w;bi(6)*w;bi(7)*w;bi(8)*w;]';
%si=sin(2*pi/6*[0:527]);
bi=sign(rand(1,6)-0.5);
vi=[bi(l)*w;bi(2)*w;bi(3)*w;bi(4)*w;bi(5)*w;bi(6)*w]';
si=sin(2*pi/9* [0:539]);
s3=si.*vi;
%tsi=rand(l,l)*16;
tsi=rand(l,l)*27;
ltsi=ceil(tsi);
s3=s3(ltsi:ltsi+511);
pwr3=l/zl*sum(s3.A2);
s3=s3/sqrt(pwr3);% normalized power

fork=l:length(SNR); %no. of SNR's
%scale noise for req. SNR
ora=SNR(k);
noi=sqrt(l/(ora))*n;
npwr= 1/z 1 *sum(noi.A2);

%xi, i= 1,2,3 is the raw data
xl=sl+noi;
x2=s2+noi;
x3=s3+noi;

%xxi, i=l,2,3 is median filtered (size 3) data
% pre-filter
xxl=medfiltl(xl,3);
xx2=medfiltl(x2,3)
xx3=medfiltl(x3,3)

%ONLY pre-filtered error results
err_l(k,i)=l/zl*sum((sl-xxl).A2)
err_2(k,i)=l/zl *sum((s2-xx2).A2)
err_3(k,i)=l/zl*sum((s3-xx3).A2)

% wavelet processing with prediction
% pre-filtered:

x 1 _real=denoisewl(xx 1 ,p,nx);
err_wl_predl (k,i)=l/zl *sum((s 1 -x l_real).A2);

35

x2_real=denoisewl(xx2,p,nx);
err_wl_pred2(k,i)=l/zl*sum((s2-x2_real).A2);
x3_real=denoisewl(xx3,p,nx);
err_wl_pred3(k,i)=l/zl*sum((s3-x3_real).A2);

% No pre-filter:
x l_real=denoisewl(x 1 ,p,nx);
er_wl_pred 1 (k,i)= 1/z 1 *sum((s 1 -x l_real).A2);
x2_real=denoisewl(x2,p,nx);
er_wl_pred2(k,i)=l/zl*sum((s2-x2_real).A2);
x3_real=denoisewl(x3,p,nx);
er_wl_pred3(k,i)=l/zl*sum((s3-x3_real).A2);

% wavelet processing with median filtering
% pre-filtered:

x l_real=dnswlmed(xx 1 ,nx);
err_wl_medl(k,i)=l/zl*sum((sl-xl_real).A2);
x2_real=dnswlmed(xx2,nx);
err_wl_med2(k,i)= 1/z 1 *sum((s2-x2_real).A2);
x3_real=dnswlmed(xx3,nx);
err_wl_med3(k,i)=l/zl*sum((s3-x3_real).A2);

% No pre-filter:
x l_real=dnswlmed(x 1 ,nx);
er_wl_medl(k,i)=l/zl*sum((sl-xl_real).A2);
x2_real=dnswlmed(x2,nx);
er_wl_med2(k,i)=l/z 1 *sum((s2-x2_real).A2);
x3_real=dnswlmed(x3,nx);
er_wl_med3(k,i)=l/zl*sum((s3-x3_real).A2);

% EFT processing with prediction
% pre-filtered:

x l_real=predi(xxl ,p);
err_fft_pred 1 (k,i)= 1 /z 1 *sum((s 1 -x ljreal). A2);
x2_real=predi(xx2,p);
err_fft_pred2(k,i)=l/zl*sum((s2-x2_real).A2);
x3_real=predi(xx3,p);
err_fft_pred3(k,i)= 1 /z 1 *sum((s3-x3_real) A2);

%No Prefilter:
xl_real=predi(xl,p);
er_fft_predl(k,i)=l/zl*sum((sl-xl_real).A2);
x2_real=predi(x2,p);

36

er_fft_pred2(k,i)=l/zl*sum((s2-x2_real).A2);
x3_real=predi(x3 ,p);
er_fft_pred3(k,i)=l/zl*sum((s3-x3_real).A2);

%FFT processing with median filtering
% pre-filtered:

xl_real=denoise_med(xxl);
err_fft_medl(k,i)=l/zl*sum((sl-xl_real).A2);
x2_real=denoise_med(xx2);
err_fft_med2(k,i)=l/zl*sum((s2-x2_real).A2);
x3_real=denoise_med(xx3);
err_fft_med3(k,i)=l/zl*sum((s3-x3_real).A2);

% No pre-filter:
x 1 _real=denoise_med(x 1);
er_fft_medl (k,i)=l/zl *sum((sl-x l_real).A2);
x2_real=denoise_med(x2);
er_fft_med2(k,i)=l/zl*sum((s2-x2_real).A2);
x3_real=denoise_med(x3);
er_fft_med3(k,i)=l/zl*sum((s3-x3_real).A2);
end
end

% compute statistical averages
me 1 =mean(err_ 1');
me2=mean(err_2');
me3=mean(err_3');

me_wl_pred 1 =mean(err_wl_pred 1');
me_wl_pred2=mean(err_wl_pred2');
me_wl_pred3=mean(err_wl_pred3');

e_wl_predl =mean(er_wl_predl');
e_wl_pred2=mean(er_wl_pred2');
e_wl_pred3=mean(er_wl_pred3');

me_wl_med 1 =mean(err_wl_med 1');
me_wl_med2=mean(err_wl_med2');
me_wl_med3=mean(err_wl_med3');

e_wl_med 1 =mean(er_wl_med 1')
e_wl_med2=mean(er_wl_med2')
e_wl_med3=mean(er_wl_med3')

me_fft_pred 1 =mean(err_fft_pred 1');
me_fft_pred2=mean(err_fft_pred2');
me_fft_pred3=mean(err_fft_pred3');

37

e_fft_pred 1 =mean(er_fft_pred 1')
e_fft_pred2=mean(er_fft_pred2')
e_fft_pred3=mean(er_fft_pred3')

me_fft_med 1 =mean(err_fft_med 1')
me_fft_med2=mean(err_fft_med2')
me_fft_med3=mean(err_fft_med3')

e_fft_med 1 =mean(er_fft_med 1')
e_fft_med2=mean(er_fft_med2')
e_fft_med3=mean(er_fft_med3')

38

Makesignal.m

function sig = MakeSignal(Name,n)
% MakeSignal - Make artificial signal
% Usage
% sig = MakeSignal(Name,n)
% Inputs
% Name string: 'HeaviSine', 'Bumps', 'Blocks',
% 'Doppler', 'Ramp', 'Cusp', 'Sing', 'HiSine',
% 'LoSine', 'LinChirp', 'TwoChirp', 'QuadChirp',
% 'MishMash', 'WernerSorrows' (Heisenberg),
% 'Leopold' (Kronecker), 'Piece-Regular' (Piece-Wise Smooth),
% 'Riemann','HypChirps','LinChirps', 'Chirps', 'Gabor'
% 'sineoneoverx','Cusp2','SmoothCusp','Gaussian'
% 'Piece-Polynomial' (Piece-Wise 3rd degree polynomial)
% n desired signal length
% Outputs
% sig 1-d signal
%
% References
% Various articles of D.L. Donoho and I.M. Johnstone
%

ifnargin>l,
t = (l:n)./n;

end
if strcmp(Name,'HeaviSine'),

sig = 4.*sin(4*pi.*t);
sig = sig - sign(t - .3) - sign(.72 -1);

elseif strcmp(Name,'Bumps'),
pos = [.1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt=[4 5 3 4 5 4.2 2.14.3 3.15.14.2];
wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005];
sig = zeros(size(t));
forj =l:length(pos)

sig = sig + hgt(j)./(1 + abs((t - pos(j))./wth(j))).A4;
end

elseif strcmp(Name,'Blocks'),
pos = [.1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];

. hgt = [4 (-5) 3 (-4) 5 (-4.2) 2.1 4.3 (-3.1) 2.1 (-4.2)];
sig = zeros(size(t));
forj=l:length(pos)

sig = sig + (1 + sign(t-pos(j))).*(hgt(j)/2);
end

elseif strcmp(Name,'Doppler'),
, sig = sqrt(t.*(l-t)).*sin((2*pi*1.05) ./(t+.05));
elseif strcmp(Name,'Ramp'),

39

sig = t - (t >= .37);
elseif strcmp(Name,'Cusp'),

sig = sqrt(abs(t - .37));
elseif strcmpCName/Sing'),

k = floor(n * .37);
sig = 1 ./abs(t - (k+.5)/n);

elseif strcmp(Name,'HiSine'),
sig = sin(pi * (n * .6902) .* t);

elseif strcmp(Name,'LoSine'),
sig = sin(pi*(n*.3333).*t);

elseif strcmp(Name,'LinChirp'),
sig = sin(pi .* t .* ((n .* .500) .* t));

elseif strcmp(Name,TwoChirp'),
sig = sin(pi .* t .* (n .* t)) + sin((pi/3) .* t .* (n .* t));

elseif strcmp(Name,'QuadChirp'),
sig = sin((pi/3) .* t .* (n .* t.A2));

elseif strcmp(Name,'MishMash'), % QuadChirp + LinChirp + HiSine
sig = sin((pi/3) .* t .* (n .* t.A2));
sig = sig + sin(pi * (n * .6902) .* t);
sig = sig + sin(pi .* t .* (n .* .125 .* t));

elseif strcmp(Name,*WernerSorrows'),
sig = sin(pi .* t .* (n/2 .* t.A2));
sig = sig + sin(pi * (n * .6902) .* t);
sig = sig + sin(pi .* t .* (n .* t));
pos = [.1 .13 .15 .23 .25 .40 .44 .65 .76 .78 .81];
hgt = [4 5 3 4 5 4.2 2.14.3 3.15.14.2]-
wth = [.005 .005 .006 .01 .01 .03 .01 .01 .005 .008 .005]-
forj=l:length(pos)

sig = sig + hgt(j)./(1 + abs((t - pos(j))./wth(j))).M;
end

elseif strcmp(Name,'Leopold'),
sig = (t = floor(.37 * n)/n); % Kronecker

elseif strcmp(Name,'Riemann'),
sqn = round(sqrt(n));

sig = t .* 0; % Riemann's Non-differentiable Function
sig((l:sqn).A2)=l../(l:sqn);
sig = real(ifft(sig));

elseif strcmp(Name,'HypChirps'), % Hyperbolic Chirps of Mallafs book
alpha = 15*n*pi/1024;
beta = 5*n*pi/1024;
t =(1.001:l:n+.001)./n;
fl =zeros(l,n);
f2 =zeros(l,n);
fl = sin(alpha./(.8-t)).*(0.1<t).*(t<0.68);
f2 = sin(beta./(.8-t)).*(0.1<t).*(t<0.75);
M = round(0.65*n);

40

P = floor(M/4);
enveloppe = ones(l,M); % the rising cutoff function

enveloppe(l:P) = (l+sin(-pi/2+((l:P)-ones(l,P))./(P-l)*pi))/2;
enveloppe(M-P+l:M) = reverse(enveloppe(l:P));

env =zeros(l,n);
env(ceil(n/10):M+ceil(n/10)-l) = enveloppe(l:M);
sig = (fl+f2).*env;

elseif strcmp(Name,'LinChirps'), % Linear Chirps of Mallat's book
b = 100*n*pi/1024;
a = 250*n*pi/1024;
t =(l:n)./n;
Al = sqrt((t-l/n).*(l-t));
sig = Al .*(cos((a*(t).A2)) + cos((b*t+a*(t).A2)));

elseif strcmp(Name,'Chirps'), % Mixture of Chirps of Mallat's book
t =(l:n)./n.*10.*pi;
f 1 = cos(t.A2*n/1024);
a = 30*n/1024;
t =(l:n)./n.*pi;
f2 = cos(a.*(t.A3));
f2 = reverse(f2);
ix = (-n:n)./n.*20;
g =exp(-ix.A2*4*n/1024);
il =(n/2+l:n/2+n);
i2 =(n/8+l:n/8+n);
j =(l:n)/n;
f3 =g(il).*cos(50.*pi.*j*n/1024);
f4 = g(i2).*cos(350.*pi.*j*n/1024);
sig =fl+f2+f3+f4;

enveloppe = ones(l,n); % the rising cutoff function
enveloppe(1 :n/8) = (1 +sin(-pi/2+((1 :n/8)-ones(1 ,n/8))./(n/8-1)*pi))/2;
enveloppe(7*n/8+l:n) = reverse(enveloppe(l:n/8));

sig = sig.*enveloppe;
elseif strcmp(Name,'Gabor'), % two modulated Gabor functions in

% Mallat's book
N = 512;
t = (-N:N)*5/N;

j = (l:N)./N;
g = exp(-t.A2*20);
il = (2*N/4+l:2*N/4+N);
i2 = (N/4+l:N/4+N);
sigl = 3*g(il).*exp(i*N/16.*pi.*j);
sig2 = 3*g(i2).*exp(i*N/4.*pi.*j);
sig = sigl+sig2;

elseif strcmpCName/sineoneoverx'), % sin(l/x) in Mallat's book
N =1024;
i = (-N+l:N);

41

i(N) = 1/100;
i = i./(N-l);
sig = sin(1.5./(i));
sig = sig(513:1536);

elseif strcmp(Name,'Cusp2'),
N = 64;
i = (l:N)./N;
x = (l-sqrt(i)) + i/2-.5;
M = 8*N;
sig = zeros(l,M);
sig(M-1.5.*N+l:M-.5*N) = x;
sig(M-2.5*N+2:M-1.5.*N+l) = reverse(x);
sig(3*N+l:3*N + N) = .5*ones(l,N);

elseif strcmp(Name,'SmoothCusp'),
sig = MakeSignal('Cusp2');
N = 64;
M = 8*N;
t = (l:M)/M;
sigma = 0.01;

g = exp(-.5.*(abs(t-.5)./sigma).A2)./sigma./sqrt(2*pi);
g = fftshift(g);
sig2 = iconv(g',sig)'/M;

elseif strcmp(Name,'Piece-Regular'),
sigl=-15*MakeSignal('Bumps',n);
t = (l:fix(n/12))./fix(n/12);
sig2=-exp(4*t);
t = (l:fix(n/7))./fix(n/7);
sig5=exp(4*t)-exp(4);
t = (l:fix(n/3))./fix(n/3);
sigma=6/40;
sig6=-70*exp(-((t-l/2).*(t-l/2))/(2*sigmaA2));
sig(l:fix(n/7))= sig6(l:fix(n/7));
sig((fix(n/7)+l):fix(n/5))=0.5*sig6((fix(n/7)+l):fix(n/5));
sig((fix(n/5)+l):fix(n/3))=sig6((fix(n/5)+l):fix(n/3));
sig((fix(n/3)+l):fix(n/2))=sigl((fix(n/3)+l):fix(n/2));
sig((fix(n/2)+l):(fix(n/2)+fix(n/12)))=sig2;
sig((fix(n/2)+2*fix(n/12)):-l:(fix(n/2)+fix(n/12)+l))=sig2;

sig(fix(ny2)+2*fix(n/12)+fix(n/20)+l:(fix(n/2)+2*fix(n/12)+3*fix(n/20)))=
-ones(l,fix(n/2)+2*fix(n/12)+3*fix(n/20)-fix(n/2)-2*fix(n/12)-fix(n/20))*25-

k=fix(n/2)+2*fix(n/12)+3*fix(n/20);
sig((k+l):(k+fix(n/7)))=sig5;
diff=n-5*fix(n/5);
sig(5*fix(n/5)+1 :n)=sig(diff:-1:1);
% zero-mean
bias=sum(sig)/n;
sig=bias-sig;

42

elseif strcmp(Name,'Piece-Polynomiar),
t = (l:fix(n/5))./fix(n/5);
sigl=20*(t.A3+t.A2+4);
sig3=40*(2.*t.A3+t) + 100;
sig2=10.*t.A3 + 45;
sig4=16*t.A2+8.*t+16;
sig5=20*(t+4);
sig6(1 :fix(n/l 0))=ones(1 ,fix(n/l 0));
sig6=sig6*20;
sig(l:fix(n/5))=sigl;
sig(2*fix(n/5):-l:(fix(n/5)+l))=sig2;
sig((2*fix(n/5)+l):3*fix(n/5))=sig3;
sig((3*fix(n/5)+l):4*fix(n/5))=sig4;
sig((4*fix(n/5)+l):5*fix(n/5))=sig5(fix(n/5):-l: 1);
diff=n-5*fix(n/5);
sig(5*fix(n/5)+l :n)=sig(diff:-1:1);
%sig((fix(n/20)+l):(fix(n/20)+fix(n/10)))=-ones(l,fix(n/10))*20;
sig((fix(n/20)+l):(fix(n/20)+fix(n/10)))=ones(l,fix(n/10))*10;
sig((n-fix(n/10)+l):(n+fix(n/20)-

fix(n/10)))=ones(l,fix(n/20))*150;
% zero-mean
bias=sum(sig)/n;
sig=sig-bias;

elseif strcmp(Name,'Gaussian'),
sig=GWN(n,beta);
g=zeros(l,n);
lim=alpha*n;
mult=pi/(2*alpha*n);
g(1 :lim)=(cos(mult*(1 :lim))).A2;
g((n/2+l):n)=g((n/2):-l:l);
g = mshift(g,n/2);
g=g/norm(g);
sig=iconv(g,sig);

else
disp(sprintf('MakeSignal: I don*t recognize <<%s»',Name))
dispCAllowable Names are:')

disp('HeaviSine'),
disp('Bumps'),
disp('Blocks'),
disp('Doppler'),
disp('Ramp'),
disp('Cusp'),
disp('Crease'),
disp('Sing'),
disp('HiSine'),
disp('LoSine'),

43

dispC'LinChirp*),
disp('TwoChirp'),
dispCQuadChirp'),
disp('MishMash'),
disp('WemerSorrows'),
disp('Leopold'),
dispCSing'),
disp('HiSme'),
disp('LoSine'),
disp('LinChirp'),
disp(TwoChirp'),
disp('QuadChirp'),
disp('MishMash'),
disp('WeraerSorrows'),
disp('Leopold'),
disp('Riemann'),
dispCHypChirps'),
disp('LinChirps'),
disp('Chirps'),
disp('sineoneoverx'),
disp('Cusp2'),
disp('SmoothCusp'),
disp('Gabor'),
disp('Piece-Regular');
disp('Piece-Polynomial');
disp('Gaussian');

end

%

% Originally made by David L. Donoho.
% Function has been enhanced.

%

% Part of WaveLab Version 802
% Built Sunday, October 3, 1999 8:52:27 AM
% This is Copyrighted Material
% For Copying permissions see COPYING.m
% Comments? e-mail wavelab@stat.stanford.edu
%

44

denoisewl.m

% Denoise:
% via orthogonal wavelet transform. We modify each
% detail and approx.function by prediction
% %
% SYNTAX: x_real=denoisewl(xn,p,nx)
%
% INPUT: xn = Received signal
% p= predictor order
% nx = number of scales used
%
% OUTPUT: x_real = Denoised signal
%
%
% SUB_FUNC: depred
% Written by ralph hippenstiel

function x_real=denoisewl(xn,p,nx);

[ex lx]=wavedec(xn,nx,'db4');

dxc=[];
for i=l:nx

d=detcoef(cx,lx,i);
dl=length(d);

dc=depred(d,p);
dxc=[dc dxc];

end
a=appcoef(cx,lx,'db4',nx);

ac=depred(a,p);
dxc=[ac dxc];

xd=waverec(dxc,lx,'db4');
x_real=xd;

45

dnswlmed.m

% Denoise:
% via orthogonal wavelet transform. We modify each
% detail and approx.function by prediction
% %

% SYNTAX: x_real=dnswlmed(xn,nx)
%

% INPUT: xn = Received signal
% nx = number of scales
%
%

% OUTPUT: x_real = Denoised signal
%
%

% SUB_FUNC: None
% Written by ralph hippenstiel

function x_real=dnswlmed(xn,nx);

% nx defines the level of decomposition

[ex lx]=wavedec(xn,nx,'db4');

dxc=[];
for i=l:nx

d=detcoef(cx,lx,i);
dl=length(d);

dc=medfiltl(d);
dxc=[dc dxc];

end
a=appcoef(cx,lx,'db4',nx);
ac=medfiltl(a);
dxc=[ac dxc];
xd=waverec(dxc,lx,'db4');
x_real=xd;

46

predi.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% denoises the signal using overlapped fft's and lin. prediction
% function xl_real=predi(x,p)
% p=predictor order
% output recy=denoised signal
% calls subroutine depred(t,p)
% ffts segments of the sequence using triangular windows
% written by Ralph Hippenstiel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function x_real=predi(x,p);

fx=[];

for i= 1:61

fx(i,:)=fft(x((i-l)*8+l:(i-l)*8+32).*triang(32)');

end

fork=l:17
t=fx(:,k);
xh=depred(t,p);
fx(:,k)=conj(xh)';

end
fys=conj(fliplr(fx(:,2:16)));

fx(:,18:32)=fys;

%recover the filtered sequence
recy(512)=0;
fori= 1:61

recy((i-l)*8+l:(i-l)*8+32)=recy((i-l)*8+l:(i-l)*8+32)+ifft(fx(i,:));
end

x_real=recy*0.5;

47

denoise_med.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%denoises using a ID median filter along time
%subroutine denoise_med(x)
%written by Ralph Hippenstiel

function x_real=denoise_med(x);

%transform (fft) the data
for i= 1:61

fx(i,:)=fft(x((i-1)*8+1 :(i-1)*8+32). *triang(32)');
end

%filter the transformed data
fori=l:17

fy(:,i)=medfiltl(real(fx(:,i)),3)+j*medfiltl(imag(fx(:,i)),3);
end

fys=conj(fliplr(fy(:,2:16)));
fy(:,18:32)=fys;
%recover the filtered sequence
recy(512)=0;
for i= 1:61

recy((i-l)*8+l:(i-l)*8+32)=recy((i-l)*8+l:(i-l)*8+32)+ifft(fy(i,:));
end
recy=recy*0.5;
x_real=recy;

48

depred.m

%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%denoises the test signal using a predictor of length= size
% written by Ralph Hippenstiel
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function xh=dpred(dat,siz)
xw(512)=0;
sdat=dat;
ko=length(sdat);
no=siz;
cor=xcorr(sdat);
r(1 :no+1)=cor(ko:ko+no);
a(no)=0;
xh(ko)=0;
xh(1 :no)=sdat(1 :no);
R=toeplitz(r(l :no),conj(r(l :no)));
ro=r(2:no+l);
a=in v(R) *conj (ro');
fori=no+l:ko
xw(no)=0;
fork=l:no
xw(k)=a(k)*sdat(i-k);
end
xh(i)=sum(xw);
end

49

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
8725 John J. Kingman Rd, STE 0944
Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library, Code 52 2
Naval Postgraduate School
411 Dyer Road
Monterey, CA 93943-5101

3. Research Office, Code 09 1
Naval Postgraduate School
589 Dyer Road
Monterey, CA 93943-5138

4. Chairman, Code EC 1
Department of Electrical and Computer Engineering
Naval Postgraduate School
833 Dyer Road
Monterey, CA 93943-5121

5. Professor R. Hippenstiel, Code EC/Hi 2
Chair, Electrical Engineering Department
Engineering Building
University of Texas at Tyler
3900 University Blvd
Tyler, TX 75799

6. Professor Dave Kreztmann, Code SPKD 1
NRO Chair
Naval Postgraduate School
833 Dyer Road
Monterey, C A 93943-5121

7. Mr. Donald Rogers 5
Room41D00F
414675 Lee Road
Chantilly.VA 20151-1708

50

